18.152 Midterm assignment

due April 8th 9:30 am

1. Preliminary

Given a set $A \subset \mathbb{R}^{n}$ and a function $u: A \rightarrow \mathbb{R}$, we say that
(a) $u \in C(A)$ if u is continuous in A,
(b) $u \in D^{k}(A)$ if u is k-times differentiable in A,
(c) $u \in C^{k}(A)$ if u is k-times differentiable and its k-th order derivatives are continuous in A,
(d) $u \in C^{\infty}(A)$ if u is smooth (∞-many times differentiable) in A,
(e) $u \in C^{0,1}(A)$ if u is locally Lipschitz continuous in A, (Definition 1)
(f) $u \in C^{k, 1}(A)$ if u is k-times differentiable and its k-th order derivatives are locally Lipschitz continuous in A.

Definition 1. We say that $u: A \rightarrow \mathbb{R}$ is Lipschitz continuous in A if there exists some constant C_{A} such that

$$
\begin{equation*}
|u(x)-u(y)| \leq C_{A}|x-y| \tag{1}
\end{equation*}
$$

holds for all $x, y \in A$.
We say that $u: A \rightarrow \mathbb{R}$ is locally Lipschitz continuous in A if given any compact subset $K \subset A$, u is Lipschitz continuous in K.

We recall a version of the integration by parts.
Theorem 2 (Integration by parts). A bounded open set $\Omega \subset \mathbb{R}^{n}$ has the smooth boundary $\partial \Omega$. Then,

$$
\begin{equation*}
\int_{\Omega} u_{i}(x) d x=\int_{\partial \Omega} u(\sigma) \nu_{i}(\sigma) d \sigma \tag{2}
\end{equation*}
$$

where $\nu_{i}=\left\langle\nu, e_{i}\right\rangle$.
Proof. We define $V: \Omega \rightarrow \mathbb{R}^{n}$ by $V(x)=u(x) e_{i}$. Then, the divergence theorem implies
(3) $\int_{\Omega} u_{i}(x) d x=\int_{\Omega} \operatorname{div} V(x) d x=\int_{\partial \Omega}\langle V(\sigma), \nu(\sigma)\rangle d \sigma=\int_{\partial \Omega} u(\sigma) \nu_{i}(\sigma) d \sigma$.

2. Laplace equation

Let $\Omega=B_{1}(0) \subset \mathbb{R}^{2}$. Given $f \in C^{0,1}(\bar{\Omega})$, we define

$$
\begin{equation*}
u(x)=-\int_{\Omega} G(x, y) f(y) d y \tag{4}
\end{equation*}
$$

Problem 1 (4 points). Show that

$$
\begin{equation*}
\int_{\Omega} G(x, y) d y=\frac{1}{4}\left(1-|x|^{2}\right), \tag{5}
\end{equation*}
$$

holds for $|x| \leq 1$.

Problem 2 (4 points). Show that the following holds in $\bar{\Omega}$,

$$
\begin{equation*}
|u(x)| \leq \frac{1}{4}\left(1-|x|^{2}\right) \sup _{\Omega}|f| . \tag{6}
\end{equation*}
$$

In particular, $u=0$ on $\partial \Omega$.

Theorem 3. u is differentiable in Ω. Moreover, for each $i=1,2, \frac{\partial}{\partial x_{i}} u(x)=$ $v_{i}(x)$ holds in Ω, where $v_{i}(x)$ is given by

$$
\begin{equation*}
v_{i}(x)=-\int_{\Omega} \frac{\partial}{\partial x_{i}} G(x, y) f(y) d y . \tag{7}
\end{equation*}
$$

Proof. We choose some function $\rho \in C^{1}(\mathbb{R})$ such that $0 \leq \rho \leq 1,0 \leq \rho^{\prime} \leq 2$, $\rho(t)=0$ for $t \leq 1$ and $\rho(t)=1$ for $t \geq 2$. Then, given $\epsilon>0$ we define

$$
\begin{equation*}
w_{\epsilon}(x)=-\int_{\Omega}\left[\Phi(x-y) \rho_{\epsilon}-\varphi(x, y)\right] f(y) d y . \tag{8}
\end{equation*}
$$

where $\rho_{\epsilon}=\rho(|x-y| / \epsilon)$. If $B_{2 \epsilon}(x) \subset \Omega$ then $w_{\epsilon} \in C^{1}(\Omega)$ and
(9) $\left|u-w_{\epsilon}\right| \leq \int_{B_{2 \epsilon}(x)} \Phi(x-y)\left|1-\rho_{\epsilon}\right||f(y)| d y \leq C \epsilon^{2}(1+|\log \epsilon|) \sup |f|$, and

$$
\begin{align*}
\left|v_{i}-\frac{\partial}{\partial x_{i}} w_{\epsilon}\right| & \leq \int_{B_{2 \epsilon}(x)}\left|\frac{\partial}{\partial x_{i}} \Phi(x-y)\left(1-\rho_{\epsilon}\right)\right||f(y)| d y \tag{10}\\
& \leq \sup |f| \int_{B_{2 \epsilon}(x)}\left|\frac{\partial}{\partial x_{i}} \Phi(x-y)\right|+\frac{2}{\epsilon}|\Phi(x-y)| d y \tag{11}\\
& \leq C \epsilon(1+|\log \epsilon|) \sup |f| . \tag{12}
\end{align*}
$$

Hence, in any compact subset in Ω, w_{ϵ} and $\frac{\partial}{\partial x_{i}}$ uniformly converge to u and v_{i}. Thus u is differentiable and $\frac{\partial}{\partial x_{i}} u=v_{i}$.

Problem 3 (2 point). Verify $u \in C(\bar{\Omega})$ by using Problem 2 and Theorem 3.

Given $i, j \in\{1,2\}$, we define $v_{i j}(x)$ by

$$
\begin{align*}
v_{i j}(x)= & -\int_{\Omega \backslash\{x\}}\left(\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \Phi(x-y)\right)[f(y)-f(x)] d y \tag{13}\\
& +\int_{\Omega}\left(\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \varphi(x, y)\right) f(y) d y \tag{14}\\
& -f(x) \int_{\partial \Omega}\left(\frac{\partial}{\partial y_{i}} \Phi(x-\sigma)\right) \nu_{j}(\sigma) d \sigma, \tag{15}
\end{align*}
$$

where $\nu_{j}(\sigma)=\left\langle\nu(\sigma), e_{j}\right\rangle=\left\langle\sigma, e_{j}\right\rangle=\sigma_{j}$.

Problem 4 (6 points). Given $i, j \in\{1,2\}, x \in \Omega$ and $\epsilon>0$ such that $B_{2 \epsilon}(x) \subset \Omega$, we define

$$
\begin{equation*}
w_{\epsilon}(x)=-\int_{\Omega}\left[\rho_{\epsilon}(x, y) \frac{\partial}{\partial x_{i}} \Phi(x-y)-\frac{\partial}{\partial x_{i}} \varphi(x, y)\right] f(y) \tag{16}
\end{equation*}
$$

where ρ_{ϵ} is given in the proof of Theorem 3. Then, show that there exists some constant C such that

$$
\begin{equation*}
\left|u_{i}(x)-w_{\epsilon}\right| \leq C \epsilon, \quad\left|v_{i j}(x)-\frac{\partial}{\partial x_{j}} w_{\epsilon}\right| \leq C \epsilon \tag{17}
\end{equation*}
$$

Hint $1: \operatorname{Since} f \in C^{0,1}(\bar{\Omega})$, then there exists some C_{0} SUCH that

$$
\begin{equation*}
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq C_{0}\left|x_{1}-x_{2}\right|, \tag{18}
\end{equation*}
$$

HOLDS FOR $x_{1}, x_{2} \in \bar{\Omega}$.
Hint 2 : You may use Theorem 2.

The result of Problem 4 implies
Theorem 4. $u \in D^{2}(\Omega)$ and $\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} u=v_{i j}$ holds in Ω.

Problem 5 (2 point). Show that $\Delta u=f$ holds in Ω.

Problem 6 (2 point). Show that given $g \in C^{2,1}(\bar{\Omega})$ and $f \in C^{0,1}(\bar{\Omega})$, there exists a unique $u \in D^{2}(\Omega) \cap C(\bar{\Omega})$ satisfying $\Delta u=f$ in Ω and $u=g$ on $\partial \Omega$.

Remark 5. If $f \in C^{0, \alpha}(\bar{\Omega})$ for $\alpha \in(0,1)$, then we have $u \in C^{2, \alpha}(\bar{\Omega})$. Hence, if $f \in C^{2,1}$ then by $C^{2,1} \subset C^{2, \alpha}$ we have $u \in C^{2, \alpha}(\bar{\Omega})$ for all $\alpha \in(0,1)$. The proof is given in [Gilbarg-Trudinger] section 4.

3. Liouville Theory

Problem 7 (6 point). Suppose that a positive function $u \in C^{\infty}\left(\mathbb{R}^{2} \backslash\{0\}\right)$ is harmonic. Show that u is a constant function.

Problem 8 (2 point). Find a non-constant positive harmonic function $u \in$ $C^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right)$.

Problem 9 (6 point). Suppose that a harmonic function $u \in C^{\infty}\left(\overline{\mathbb{R}_{+}^{2}}\right)$ satisfies $|u(x)| \leq x_{2}$, where $\mathbb{R}^{2}=\left\{\left(x_{1}, x_{2}\right): x_{2}>0\right\}$. Show that $u(x)=c x_{2}$ for some constant $c \in[-1,1]$.

Problem 10 (6 point). Suppose that a smooth solution $u: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}$ to the diffusion equation $u_{t}=\Delta u+u^{2}$ satisfies $u(x, t)=u\left(x+e_{i}, t\right)$ for each $i \in\{1, \cdots, n\}$. Show that $u=0$.

4. Maximum Principle

Problem 11 (5 point). Let $\Omega=B_{1}(0) \subset \mathbb{R}^{2}$. Given a positive function $f \in C^{\infty}(\bar{\Omega})$, we suppose that a strictly convex smooth function $u \in C^{\infty}(\bar{\Omega})$ satisfies $u=0$ on $\partial B_{1}(0)$ and

$$
\begin{equation*}
\operatorname{det} \nabla^{2} u(x)=f(x) \tag{19}
\end{equation*}
$$

holds in $\bar{\Omega}$, where $\operatorname{det} \nabla^{2} u=u_{11} u_{22}-u_{12}^{2}$. Show that

$$
\begin{equation*}
u(x) \geq-\frac{1}{2}\left(1-|x|^{2}\right) \sup _{y \in \Omega} \sqrt{f(y)} \tag{20}
\end{equation*}
$$

holds for all $x \in \Omega$.

Problem 12 (Bonus problem, 5 point). Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set with smooth boundary. Suppose that a smooth solution $u: \bar{Q}_{T} \rightarrow \mathbb{R}$ (where $\left.Q_{T}=\Omega \times(0, T]\right)$ to the heat equation $u_{t}=\Delta u$ satisfies the boundary condition $u=g$ on $\partial_{p} Q_{T}$ for some $g \in C^{\infty}(\overline{\Omega)}$. Show that if g satisfies $g \geq 0$ in Ω and $g>0$ in $\partial \Omega$, then $u(x, t)>0$ holds for $t>0$.

